
Workflow Documentation
Release 2.0.0

Roman Chyla

June 17, 2016

Contents

1 What is Workflow? 1

2 How do I use Workflow? 3
2.1 Basic workflow use . 3
2.2 Loops and interrupts . 4
2.3 Celery support . 7
2.4 Storage-capable engine . 8

3 Signals support 13

4 Useful engine methods 15

5 Patterns 17
5.1 Example: Parallel split . 17
5.2 Example: Synchronisation . 18

6 GenericWorkflowEngine API 21

7 DbWorkflowEngine API 25

8 Changes 27
8.1 Incompatible changes . 27
8.2 New features . 27
8.3 Improved features . 28

9 Contributing 29

10 License 31

11 Authors 33

i

ii

CHAPTER 1

What is Workflow?

The Workflow library provides a method of running Finite State Machines with memory. It can be used to execute a
set of methods, complete with conditions and patterns.

Workflow allows for a number of independent pieces of data to be processed by the same logic, while allowing for the
entire process to be forwarded, backwarded, paused, inspected, re-executed, modified and stored.

1

Workflow Documentation, Release 2.0.0

2 Chapter 1. What is Workflow?

CHAPTER 2

How do I use Workflow?

In the following sections we will take a look at Workflow’s features by working on examples of increasing complexity.
Please keep an eye out for comments in the code as they provide crucial information.

2.1 Basic workflow use

Basic use is comprised of the following steps:

1. Instantiate a workflow engine. For this example we will use the simplest provided one, but you may also extend
it to add custom behaviour.

from workflow.engine import GenericWorkflowEngine
my_engine = GenericWorkflowEngine()

2. Create tasks. These are purpose-built function functions that the workflow engine can execute.

The engine always passes (current_token, current_engine) as arguments to these functions, so they
need to support them. Note the add_data function needs to be able to accept more arguments. For
this we use a closure.

from functools import wraps

def print_data(obj, eng):
"""Print the data found in the token."""
print obj.data

def add_data(number_to_add):
"""Add number_to_add to obj.data."""
@wraps(add_data)
def _add_data(obj, eng):

obj.data += number_to_add
return _add_data

2. Create a workflow definition (also known as callbacks). This is a (sometimes nested) list of tasks that we wish
to run.

my_workflow_definition = [
add_data(1),
print_data

]

3

Workflow Documentation, Release 2.0.0

3. Define tokens. This is the data that we wish to feed the workflow. Since the data we will deal with in this
example is immutable, we need to place it in token wrappers . Another reason you may wish to wrap your data
is to be able to store metadata in the object.

class MyObject(object):
def __init__(self, data):

self.data = data

my_object0 = MyObject(0)
my_object1 = MyObject(1)

4. Run the engine on a list of such wrappers with our workflow definition.

The engine passes the tokens that we give it one at a time through the workflow.

my_engine.callbacks.replace(my_workflow_definition)

my_engine.process([my_object0, my_object1])
The engine prints: "1\n2"
my_object0 == 1
my_object1 == 2

5. Bonus! Once the engine has ran, it can be reused.

my_engine.process([my_object0, my_object1])
The engine prints: "2\n3"
my_object0 == 2
my_object1 == 3

2.2 Loops and interrupts

Let’s take a look at a slightly more advanced example. There are two things to note here:

• How control flow is done. We provide, among others, IF_ELSE and FOR statements. They are simple functions
- therefore you can make your own if you wish to. We will see examples of this in the Details section.

• Control flow can reach outside the engine via exceptions. We will raise the WorkflowHalt exception to return
the control to our code before the workflow has even finished and then even resume it.

In this example, we have a series of lists composed of 0 and 1 and we want to:

1. Add [0, 1] at the end of the list.

2. Repeat a until list >= [0, 1, 0, 1].

3. Add [1] when we are done.

Here are some example transformations that describe the above:

• [] –> [0, 1, 0, 1, 1]

• [0, 1] –> [0, 1, 0, 1, 1]

• [0, 1, 0, 1] –> [0, 1, 0, 1, 0, 1, 1]

Time for some code! Let’s start with the imports. Pay close attention as their arguments are explained briefly here.

from workflow.engine import GenericWorkflowEngine
from workflow.errors import HaltProcessing
from workflow.patterns.controlflow import (
FOR, # Simple for-loop, a-la python. First argument is an iterable,

4 Chapter 2. How do I use Workflow?

Workflow Documentation, Release 2.0.0

second defines where to save the current value, and the third
is the code that runs in the loop.

HALT, # Halts the engine. This brings it to a state where it can be
inspected, resumed, restarted, or other.

IF_ELSE, # Simple `if-else` statement that accepts 3 arguments.
(condition, tasks if true, tasks if false)

CMP, # Simple function to support python comparisons directly from a
workflow engine.

)

Now to define some functions of our own.

Note that the first function leverages eng.extra_data. This is a simple dictionary that the GenericWorkflowEngine
exposes and it acts as a shared storage that persists during the execution of the engine.

The two latter functions wrap engine functionality that’s already there, but add print statements for the example.

def append_from(key):
"""Append data from a given `key` of the engine's `extra_data`."""
def _append_from(obj, eng):

obj.append(eng.extra_data[key])
print "new data:", obj

return _append_from

def interrupt_workflow(obj, eng):
"""Raise the `HaltProcessing` exception.

This is not handled by the engine and bubbles up to our code.
"""
print "Raising HaltProcessing"
eng.halt("interrupting this workflow.")

def restart_workflow(obj, eng):
"""Restart the engine with the current object, from the first task."""
print "Restarting the engine"
eng.restart('current', 'first')

We are now ready to create the workflow:

my_workflow = [
FOR(range(2), "my_current_value", # For-loop, from 0 to 1, that sets

the current value to
`eng.extra_data["my_current_value"]`

[
append_from("my_current_value"), # Gets the value set above

and appends it to our token
]

), # END FOR

IF_ELSE(
CMP((lambda o, e: o), [0, 1 ,0, 1], "<"), # Condition:

"if obj < [0,1,0,1]:"

[restart_workflow], # Tasks to run if condition
is True:
"return back to the FOR"

2.2. Loops and interrupts 5

Workflow Documentation, Release 2.0.0

[# Tasks to run if condition
is False:

append_from("my_current_value"), # "append 1 (note we still
have access to it)

interrupt_workflow # and interrupt"
]

) # END IF_ELSE
]

Because our workflow interrupts itself, we will wrap the call to process and restart, in try-except statements.

Create the engine as in the previous example
my_engine = GenericWorkflowEngine()
my_engine.callbacks.replace(my_workflow)

try:
Note how we don't need to keep a reference to our tokens - the engine
allows us to access them via `my_engine.objects` later.
my_engine.process([[], [0,1], [0,1,0,1]])

except HaltProcessing:
Our engine was built to throw this exception every time an object is
completed. At this point we can inspect the object to decide what to
do next. In any case, we will ask it to move to the next object,
until it stops throwing the exception (which, in our case, means it
has finished with all objects).
while True:

try:
Restart the engine with the next object, starting from the
first task.
my_engine.restart('next', 'first')

except HaltProcessing:
continue

else:
print "Done!", my_engine.objects
break

Here is what the execution prints:

new data: [0]
new data: [0, 1]
Restarting the engine
new data: [0, 1, 0]
new data: [0, 1, 0, 1]
new data: [0, 1, 0, 1, 1]
Raising HaltProcessing
new data: [0, 1, 0]
new data: [0, 1, 0, 1]
new data: [0, 1, 0, 1, 1]
Raising HaltProcessing
new data: [0, 1, 0, 1, 0]
new data: [0, 1, 0, 1, 0, 1]
new data: [0, 1, 0, 1, 0, 1, 1]
Raising HaltProcessing
Done! [[0, 1, 0, 1, 1], [0, 1, 0, 1, 1], [0, 1, 0, 1, 0, 1, 1]]

6 Chapter 2. How do I use Workflow?

Workflow Documentation, Release 2.0.0

2.3 Celery support

Celery is a widely used distributed task queue. The independent nature of workflows and their ability to be restarted
and resumed makes it a good candidate for running in a task queue. Let’s take a look at running a workflow inside
celery.

Assuming workflow is already installed, let’s also install celery:

$ pip install 'celery[redis]'

Onto the code next:

from celery import Celery

`app` is required by the celery worker.
app = Celery('workflow_sample', broker='redis://localhost:6379/0')

Define a couple of basic tasks.
def add(obj, eng):

obj["value"] += 2

def print_res(obj, eng):
print obj.get("value")

Create a workflow out of them.
flow = [add, print_res]

Mark our execution process as a celery task with this decorator.
@app.task
def run_workflow(data):

Note that the imports that this function requires must be done inside
it since our code will not be running in the global context.
from workflow.engine import GenericWorkflowEngine
wfe = GenericWorkflowEngine()
wfe.setWorkflow(flow)
wfe.process(data)

Code that runs when we call this script directly. This way we can start
as many workflows as we wish and let celery handle how they are
distributed and when they run.
if __name__ == "__main__":

run_workflow.delay([{"value": 10}, {"value": 20}, {"value": 30}])

Time to bring celery up:

1. Save this file as /some/path/workflow_sample.py

2. Bring up a worker in one terminal:

$ cd /some/path
$ celery -A workflow_sample worker --loglevel=info

3. Use another terminal to request run_workflow to be ran with the above arguments:

$ cd /some/path
$ python workflow_sample.py

You should see the worker working. Try running python workflow_sample.py again.

2.3. Celery support 7

Workflow Documentation, Release 2.0.0

2.4 Storage-capable engine

The Workflow library comes with an alternative engine which is built to work with SQLAlchemy databases (Db-
WorkflowEngine). This means that one can store the state of the engine and objects for later use. This opens up new
possibilities:

• A front-end can be attached to the engine with ease.

• Workflows can be stored for resume at a later time..

• ..or even shared between processing nodes.

In this example we will see a simple implementation of such a database-stored, resumable workflow.

We will reveal the problem that we will be solving much later. For now, we can start by creating a couple of
SQLAlchemy schemas:

• One to attach to the workflow itself (a workflow will represent a student)

• and one where a single grade (a grade will be the grade of a single test)

Note that the Workflow model below can store an element pointer. This pointer (found at engine.state.token_pos)
indicates the object that is currently being processed and saving it is crucial so that the engine can resume at a later
time from that point.

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, create_engine, ForeignKey, Boolean
from sqlalchemy.orm import sessionmaker, relationship

Create an engine and a session
engine = create_engine('sqlite://')
Base = declarative_base(bind=engine)
DBSession = sessionmaker(bind=engine)
session = DBSession()

class Workflow(Base):
__tablename__ = 'workflow'
id = Column(Integer, primary_key=True)
state_token_pos = Column(Integer, default=-1)
grades = relationship('Grade', backref='workflow',

cascade="all, delete, delete-orphan")

def save(self, token_pos):
"""Save object to persistent storage."""
self.state_token_pos = token_pos
session.begin(subtransactions=True)
try:

session.add(self)
session.commit()

except Exception:
session.rollback()
raise

class Grade(Base):
__tablename__ = 'grade'
id = Column(Integer, primary_key=True)
data = Column(Integer, nullable=False, default=0)

8 Chapter 2. How do I use Workflow?

Workflow Documentation, Release 2.0.0

user_id = Column(Integer, ForeignKey('workflow.id'))

def __init__(self, grade):
self.data = grade
session.add(self)

Base.metadata.create_all(engine)

Next, we have to tell DbWorkflowEngine how and when to use our storage. To do that we need to know a bit about the
engine’s processing_factory property, which is expected to provide this structure of methods and properties:

• before_processing

• after_processing

• before_object

• after_object

• action_mapper (property)

– before_callbacks

– after_callbacks

– before_each_callback

– after_each_callback

• transition_exception_mapper (property)

– StopProcessing

– HaltProcessing

– ContinueNextToken

– JumpToken

– Exception

– ... (Can be extended by adding any method that has the name of an expected exception)

The transition_exception_mapper can look confusing at first. It contains not Exceptions, but methods that are called
when exceptions with the same name are raised.

• Some exceptions are internal to the engine only and never bubble up. (eg JumpToken, ContinueNext-
Token)

• Others are partly handled internally and then bubbled up to the user to take action. (eg Exception)

Let’s use the above to ask our engine to:

1. Save the first objects that it is given.

2. Save to our database every time it finished processing an object and when there is an expected
failure.

For now, all we need to know is that in our example, HaltProcessing is an exception that we will intentionally raise
and we want to save the engine when it occurs. Once again, follow the comments carefully to understand the code.

from workflow.engine_db import DbWorkflowEngine
from workflow.errors import HaltProcessing
from workflow.engine import TransitionActions, ProcessingFactory

class MyDbWorkflowEngine(DbWorkflowEngine):

2.4. Storage-capable engine 9

Workflow Documentation, Release 2.0.0

def __init__(self, db_obj):
"""Load an old `token_pos` from the db into the engine."""

The reason we save token_pos _first_, is because calling `super`
will reset.
token_pos = db_obj.state_token_pos

self.db_obj = db_obj
super(DbWorkflowEngine, self).__init__()

And now we inject it back into the engine's `state`.
if token_pos is not None:

self.state.token_pos = token_pos
self.save()

For this example we are interested in saving `token_pos` as explained
previously, so we override `save` to do that.
def save(self, token_pos=None):

"""Save the state of the workflow."""
if token_pos is not None:

self.state.token_pos = token_pos
self.db_obj.save(self.state.token_pos)

We want our own processing factory, so we tell the engine that we
have subclassed it below.
@staticproperty
def processing_factory():

"""Provide a processing factory."""
return MyProcessingFactory

class MyProcessingFactory(ProcessingFactory):
"""Processing factory for persistence requirements."""

We also have our own `transition_actions`
@staticproperty
def transition_exception_mapper():

"""Define our for handling transition exceptions."""
return MyTransitionActions

Before any processing is done, we wish to save the `objects` (tokens)
that have been passed to the engine, if they aren't already stored.
@staticmethod
def before_processing(eng, objects):

"""Make sure the engine has a relationship with
its objects."""
if not eng.db_obj.grades:

for obj in objects:
eng.db_obj.grades.append(obj)

We wish to save on every successful completion of a token.
@staticmethod
def after_processing(eng, objects):

"""Save after we processed all the objects successfully."""
eng.save()

class MyTransitionActions(TransitionActions):

10 Chapter 2. How do I use Workflow?

Workflow Documentation, Release 2.0.0

But we also wish to save when `HaltProcessing` is raised, because this
is going to be an expected situation.
@staticmethod
def HaltProcessing(obj, eng, callbacks, e):

"""Save whenever HaltProcessing is raised, so
that we don't lose the state."""
eng.save()
raise e

And now, for the problem that we want to solve itself. Imagine an fictional exam where a student has to take 6 tests
in one day. The tests are processed in a specific order by a system. Whenever the system locates a failing grade, as
punishment, the student is asked to take the failed test again the next day. Then the checking process is resumed until
the next failing grade is located and the student must show up again the following day.

Assume that a student, Zack P. Hacker, has just finished taking all 6 tests. A workflow that does the following checking
can now be implemented like so:

from workflow.patterns.controlflow import IF, HALT
from workflow.utils import staticproperty

my_workflow_instance = Workflow()
my_db_engine = MyDbWorkflowEngine(my_workflow_instance)

def grade_is_not_passing(obj, eng):
print 'Testing grade #{0}, with data {1}'.format(obj.id, obj.data)
return obj.data < 5

callbacks = [
IF(grade_is_not_passing,

[
HALT()

]),
]

my_db_engine.callbacks.replace(callbacks)
try:

my_db_engine.process([
Grade(6), Grade(5), Grade(4),
Grade(5), Grade(2), Grade(6)

])
except HaltProcessing:

print 'The student has failed this test!'

At this point, the engine has already saved its state in the database,
regardless of the outcome.

The above script prints:

Testing grade #1, with data 6
Testing grade #2, with data 5
Testing grade #3, with data 4
The student has failed this test!

“Obviously this system is terrible and something must be done”, thinks Zack who was just notified about his “4” and
logs onto the system, armed with a small python script:

def amend_grade(obj, eng):
print 'Amending this grade..'
obj.data = 5

2.4. Storage-capable engine 11

Workflow Documentation, Release 2.0.0

evil_callbacks = [
IF(grade_is_not_passing,

[
amend_grade

]),
]

Load yesterday's workflow and bring up an engine for it.
revived_workflow = session.query(Workflow).one()
my_db_engine = MyDbWorkflowEngine(revived_workflow)

print '\nWhat Zak sees:', [grade.data for grade in revived_workflow.grades]

Let's fix that.
my_db_engine.callbacks.replace(evil_callbacks)
print 'Note how the engine resumes from the last failing test:'
my_db_engine.restart('current', 'first', objects=revived_workflow.grades)

These words are printed in Zack’s terminal:

What Zak sees: [6, 5, 4, 5, 2, 6]
Note how the engine resumes from the last failing test:
Testing grade #3, with data 4
Amending this grade..
Testing grade #4, with data 5
Testing grade #5, with data 2
Amending this grade..
Testing grade #6, with data 6

When someone logs into the system to check how Zack did..

revived_workflow = session.query(Workflow).one()
print '\nWhat the professor sees:', [grade.data for grade in revived_workflow.grades]

Everything looks good:

What the professor sees: [6, 5, 5, 5, 5, 6]

The moral of this story is to keep off-site logs and back-ups. Also, workflows are complex but powerful.

12 Chapter 2. How do I use Workflow?

CHAPTER 3

Signals support

Adding to the exception and override-based mechanisms, Workflow supports a few signals out of the box if the blinker
package is installed. The following exceptions are triggered by the GenericWorkflowEngine.

Signal Called by
workflow_started ProcessingFactory.before_processing
workflow_finished ProcessingFactory.after_processing
workflow_halted TransitionActions.HaltProcessing

13

Workflow Documentation, Release 2.0.0

14 Chapter 3. Signals support

CHAPTER 4

Useful engine methods

Other than eng.halt, the GenericWorkflowEngine provides more convenience methods out of the box.

Sample call Description
eng.stop() stop the workflow
eng.halt(“list exhausted”) halt the workflow
eng.continue_next_token() continue from the next token
eng.jump_token(-2) jump offset tokens
eng.jump_call(3) jump offset steps of a loop
eng.break_current_loop() break out of the current loop

By calling these, any task can influence the whole pipeline. You can read more about the methods our engines provide
at the end of this document.

15

Workflow Documentation, Release 2.0.0

16 Chapter 4. Useful engine methods

CHAPTER 5

Patterns

The workflow module also comes with many patterns that can be directly used in the definition of the pipeline, such
as PARALLEL_SPLIT.

Consider this example of a task:

def if_else(call):
def inner_call(obj, eng):

if call(obj, eng): # if True, continue processing..
eng.jump_call(1)

else: # ..else, skip the next step
eng.jump_call(2)

return inner_call

We can then write a workflow definition like this:

[
if_else(stage_submission),

[
[

if_else(fulltext_available),
[extract_metadata, populate_empty_fields],
[]

],
[

if_else(check_for_duplicates),
[stop_processing],
[synchronize_fields, replace_values]

],
check_mandatory_fields,

],
[

check_mandatory_fields,
check_preferred_values,
save_record

]
]

5.1 Example: Parallel split

This pattern is called Parallel split (as tasks B,C,D are all started in parallel after task A). It could be implemented like
this:

17

Workflow Documentation, Release 2.0.0

def PARALLEL_SPLIT(*args):
"""
Tasks A,B,C,D... are all started in parallel
@attention: tasks A,B,C,D... are not addressable, you can't

you can't use jumping to them (they are invisible to
the workflow engine). Though you can jump inside the
branches

@attention: tasks B,C,D... will be running on their own
once you have started them, and we are not waiting for
them to finish. Workflow will continue executing other
tasks while B,C,D... might be still running.

@attention: a new engine is spawned for each branch or code,
all operations works as expected, but mind that the branches
know about themselves, they don't see other tasks outside.
They are passed the object, but not the old workflow
engine object

@postcondition: eng object will contain lock (to be used
by threads)

"""

def _parallel_split(obj, eng, calls):
lock = thread.allocate_lock()
eng.store['lock'] = lock
for func in calls:

new_eng = eng.duplicate()
new_eng.setWorkflow([lambda o, e: e.store.update({'lock': lock}), func])
thread.start_new_thread(new_eng.process, ([obj],))

return lambda o, e: _parallel_split(o, e, args)

Subsequently, we can use PARALLEL_SPLIT like this.

from workflow.patterns import PARALLEL_SPLIT
from my_module_x import task_a,task_b,task_c,task_d

[
task_a,
PARALLEL_SPLIT(task_b,task_c,task_d)

]

Note that PARALLEL_SPLIT is already provided in workflow.patterns.PARALLEL_SPLIT.

5.2 Example: Synchronisation

After the execution of task B, task C, and task D, task E can be executed (I will present the threaded version, as the
sequential version would be dead simple).

def SYNCHRONIZE(*args, **kwargs):
"""
After the execution of task B, task C, and task D, task E can be executed.
@var *args: args can be a mix of callables and list of callables

the simplest situation comes when you pass a list of callables
they will be simply executed in parallel.

But if you pass a list of callables (branch of callables)
which is potentially a new workflow, we will first create a
workflow engine with the workflows, and execute the branch in it

@attention: you should never jump out of the synchronized branches
"""

18 Chapter 5. Patterns

Workflow Documentation, Release 2.0.0

timeout = MAX_TIMEOUT
if 'timeout' in kwargs:

timeout = kwargs['timeout']

if len(args) < 2:
raise Exception('You must pass at least two callables')

def _synchronize(obj, eng):
queue = MyTimeoutQueue()
#spawn a pool of threads, and pass them queue instance
for i in range(len(args)-1):

t = MySpecialThread(queue)
t.setDaemon(True)
t.start()

for func in args[0:-1]:
if isinstance(func, list) or isinstance(func, tuple):

new_eng = duplicate_engine_instance(eng)
new_eng.setWorkflow(func)
queue.put(lambda: new_eng.process([obj]))

else:
queue.put(lambda: func(obj, eng))

#wait on the queue until everything has been processed
queue.join_with_timeout(timeout)

#run the last func
args[-1](obj, eng)

_synchronize.__name__ = 'SYNCHRONIZE'
return _synchronize

Configuration (i.e. what would admins write):

from workflow.patterns import SYNCHRONIZE
from my_module_x import task_a,task_b,task_c,task_d

[
SYNCHRONIZE(task_b,task_c,task_d, task_a)

]

5.2. Example: Synchronisation 19

Workflow Documentation, Release 2.0.0

20 Chapter 5. Patterns

CHAPTER 6

GenericWorkflowEngine API

This documentation is automatically generated from Workflow’s source code.

class workflow.engine.GenericWorkflowEngine
Workflow engine is a Finite State Machine with memory.

Used to execute set of methods in a specified order.

See docs/index.rst for extensive examples.

static abort()
Abort current workflow execution without saving object.

static abortProcessing(*args, **kwargs)
Abort current workflow execution without saving object.

break_current_loop()
Break out of the current callbacks loop.

callback_chooser(obj)
Choose proper callback method.

There are possibly many workflows inside this workflow engine and they are meant for different types of
objects, this method should choose and return the callbacks appropriate for the currently processed object.

Parameters obj – currently processed object

Returns list of callbacks to run

Note: This method is part of the engine and not part of Callbacks to grant those who wish to have their
own logic here access to all the attributes of the engine.

continue_next_token()
Continue with the next token.

current_object
Return the currently active DbWorkflowObject.

current_taskname
Get name of current task/step in the workflow (if applicable).

execute_callback(callback, obj)
Execute a single callback.

Override this method to implement per-callback logging.

21

Workflow Documentation, Release 2.0.0

halt(msg=’‘, action=None, payload=None)
Halt the workflow (stop also any parent wfe).

Halts the currently running workflow by raising HaltProcessing.

You can provide a message and the name of an action to be taken (from an action in actions registry).

Parameters

• msg (str) – message explaining the reason for halting.

• action (str) – name of valid action in actions registry.

Raises HaltProcessing

has_completed
Return whether the engine has completed its execution.

init_logger()
Return the appropriate logger instance.

jump_call(offset)
Jump to offset calls (in this loop) away.

Parameters offset (int) – Number of steps to jump. May be positive or negative.

static jump_token(offset)
Jump to offset tokens away.

process(objects, stop_on_error=True, stop_on_halt=True, initial_run=True, reset_state=True)
Start processing objects.

Parameters

• objects – list of objects to be processed

• stop_on_error – whether to stop the workflow if HaltProcessing is raised

• stop_on_error – whether to stop the workflow if WorkflowError is raised

• initial_run – whether this is the first execution of this engine

Raises Any exception that is not handled by the transitions_exception_mapper.

processing_factory
alias of ProcessingFactory

restart(obj, task, objects=None, stop_on_error=True, stop_on_halt=True)
Restart the workflow engine at given object and task.

Will restart the workflow engine instance at given object and task relative to current state.

obj must be either:

•“prev”: previous object

•“current”: current object

•“next”: next object

•“first”: first object

task must be either:

•“prev”: previous task

•“current”: current task

•“next”: next task

22 Chapter 6. GenericWorkflowEngine API

http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#int

Workflow Documentation, Release 2.0.0

•“first”: first task

To continue with next object from the first task:

wfe.restart("next", "first")

Parameters

• obj (str) – the object which should be restarted

• task (str) – the task which should be restarted

run_callbacks(callbacks, objects, obj, indent=0)
Execute callbacks in the workflow.

Parameters

• callbacks – list of callables (may be deep nested)

• objects – list of processed objects

• obj – currently processed object

• indent – int, indendation level - the counter at the indent level is increases after the
task has finished processing; on error it will point to the last executed task position. The
position adjusting also happens after the task has finished.

static skipToken(*args, **kwargs)
Skip current workflow object without saving it.

static skip_token()
Skip current workflow object without saving it.

stop()
Break out, stop everything (in the current wfe).

class workflow.engine.MachineState(token_pos=None, callback_pos=None)
Machine state storage.

Properties

token_pos

As the WFE proceeds, it increments this internal counter: the number of the element. This
pointer increases before the object is taken.

callback_pos

Reserved for the array that points to the task position. The number there points to the task that is
currently executed; when error happens, it will be there unchanged. The pointer is updated after
the task finished running.

callback_pos_reset()
Reset callback_pos to its default value.

reset()
Reset the state of the machine.

token_pos_reset()
Reset token_pos to its default value.

class workflow.engine.Callbacks
Callbacks storage and interface for workflow engines.

23

http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#str

Workflow Documentation, Release 2.0.0

The reason for interfacing for a dict is mainly to prevent cases where the state and the callbacks would be out of
sync (eg by accidentally adding a callback to the beginning of a callback list).

add(func, key=’*’)
Insert one callable to the stack of the callables. :type key: str

add_many(list_or_tuple, key=’*’)
Insert many callable to the stack of thec callables.

classmethod cleanup_callables(callbacks)
Remove non-callables from the passed-in callbacks.

..note:: Tuples are flattened into normal members. Only lists are nested as expected.

clear(key=’*’)
Remove tasks from the workflow engine instance, or all if no key.

clear_all()
Remove tasks from the workflow engine instance, or all if no key.

empty()
Is it empty?

get(key=’*’)
Return callbacks for the given workflow.

Parameters key (str) – name of the workflow (default: ‘*’) if you want to get all configured
workflows pass None object as a key

Returns list of callbacks

replace(funcs, key=’*’)
Replace processing workflow with a new workflow.

class workflow.engine._Signal
Helper for storing signal callers.

workflow_error(eng, *args, **kwargs)
Call the workflow_error signal if signals is installed.

workflow_finished(eng, *args, **kwargs)
Call the workflow_finished signal if signals is installed.

workflow_halted(eng, *args, **kwargs)
Call the workflow_halted signal if signals is installed.

workflow_started(eng, *args, **kwargs)
Call the workflow_started signal if signals is installed.

24 Chapter 6. GenericWorkflowEngine API

http://docs.python.org/2/library/functions.html#str

CHAPTER 7

DbWorkflowEngine API

class workflow.engine_db.DbWorkflowEngine(db_obj, **kwargs)
GenericWorkflowEngine with DB persistence.

Adds a SQLAlchemy database model to save workflow states and workflow data.

Overrides key functions in GenericWorkflowEngine to implement logging and certain workarounds for storing
data before/after task calls (This part will be revisited in the future).

database_objects
Return the objects associated with this workflow.

final_objects
Return the objects associated with this workflow.

halted_objects
Return the objects associated with this workflow.

known_statuses
alias of WorkflowStatus

name
Return the name.

processing_factory
alias of DbProcessingFactory

running_objects
Return the objects associated with this workflow.

save(status=None)
Save the workflow instance to database.

status
Return the status.

uuid
Return the status.

class workflow.engine_db.WorkflowStatus(label)
Define the known workflow statuses.

class workflow.engine_db.ObjectStatus(label)
Specify the known object statuses.

25

Workflow Documentation, Release 2.0.0

26 Chapter 7. DbWorkflowEngine API

CHAPTER 8

Changes

Version 2.0.0 (released 2016-06-17):

8.1 Incompatible changes

• Drops setVar(), getVar(), delVar() and exposes the engine.store dictionary directly, with an added setget() method
that acts as getVar().

• Renames s/getCurrObjId/curr_obj_id/ and s/getCurrTaskId/curr_task_id/ which are now properties. Also re-
names s/getObjects/get_object/ which now no longer returns index.

• Removes PhoenixWorkflowEngine. To use its functionality, the new engine model’s extensibility can be used.

• Moves processing_factory out of the WorkflowEngine and into its own class. The majority of its operations can
now be overridden by means of subclassing WorkflowEngine and the new, complementing ActionMapper and
TransitionActions classes and defining properties. This way super can be used safely while retaining the ability
to continue or break out of the main loop.

• Moves exceptions to errors.py.

• Changes interface to use pythonic names and renames methods to use more consistent names.

• WorkflowHalt exception was merged into HaltProcessing and the WorkflowMissingKey exception has been
dropped.

• Renames ObjectVersion to ObjectStatus (as imported from Invenio) and ObjectVersion.FINAL to ObjectVer-
sion.COMPLETED.

8.2 New features

• Introduces SkipToken and AbortProcessing from engine_db.

• Adds support for signaling other processes about the actions taken by the engine, if blinker is installed.

• Moves callbacks to their own class to reduce complexity in the engine and allow extending.

• GenericWorkflowEngine.process now supports restarting the workflow (backported from Invenio)

27

Workflow Documentation, Release 2.0.0

8.3 Improved features

• Updates all staticproperty functions to classproperty to have access to class type and avoid issue with missing
arguments to class methods.

• Re-raises exceptions in the engine so that they are propagated correctly to the user.

• Replaces _i with MachineState, which protects its contents and explains their function.

• Allows for overriding the logger with any python-style logger by defining the init_logger method so that projects
can use their own.

• Splits the DbWorkflowEngine initializer into with_name and from_uuid for separation of concerns. The latter
no longer implicitly creates a new object if the given uuid does not exist in the database. The uuid comparison
with the log name is now reinforced.

• Updates tests requirements.

Version 1.2.0 (released 2014-10-23):

• Fix interference with the logging level. (#22 #23)

• Test runner is using Pytest. (#21)

• Python 3 support. (#7)

• Code style follows PEP8 and PEP257. (#6 #14)

• Improved Sphinx documentation. (#5 #28)

• Simplification of licensing. (#27)

• Spelling mistake fixes. (#26)

• Testing with Tox support. (#4)

• Configuration for Travis-Cl testing service. (#3)

• Test coverage report. (#2)

• Unix style line terminators. (#10)

Version 1.0 (released 2011-07-07):

• Initial public release.

• Includes the code created by Roman Chyla, the core of the workflow engine together with some basic patterns.

• Raja Sripada <rsripada at cern ch> contributed improvements to the pickle&restart mechanism.

28 Chapter 8. Changes

CHAPTER 9

Contributing

Bug reports, feature requests, and other contributions are welcome. If you find a demonstrable problem that is caused
by the code of this library, please:

1. Search for already reported problems.

2. Check if the issue has been fixed or is still reproducible on the latest master branch.

3. Create an issue with a test case.

If you create a feature branch, you can run the tests to ensure everything is operating correctly:

$./run-tests.sh

...
Name Stmts Miss Cover Missing

workflow/__init__ 2 0 100%
workflow/config 231 92 60% ...
workflow/engine 321 93 71% ...
workflow/patterns/__init__ 5 0 100%
workflow/patterns/controlflow 159 66 58% ...
workflow/patterns/utils 249 200 20% ...
workflow/version 2 0 100%

TOTAL 969 451 53%

...

55 passed, 1 warnings in 3.10 seconds

29

https://github.com/inveniosoftware/workflow/issues

Workflow Documentation, Release 2.0.0

30 Chapter 9. Contributing

CHAPTER 10

License

Workflow is free software; you can redistribute it and/or modify it under the terms of the Revised BSD License quoted
below.

Copyright (C) 2011, 2012, 2014, 2015, 2016 CERN.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

In applying this license, CERN does not waive the privileges and immunities granted to it by virtue of its status as an
Intergovernmental Organization or submit itself to any jurisdiction.

31

Workflow Documentation, Release 2.0.0

32 Chapter 10. License

CHAPTER 11

Authors

Workflow was originally developed by Roman Chyla. It is now being developed and maintained by the Invenio
collaboration. You can contact us at info@invenio-software.org.

Contributors:

• Roman Chyla <roman.chyla@gmail.com>

• Raja Sripada <raja.sripada@cern.ch>

• Jiri Kuncar <jiri.kuncar@cern.ch>

• Tibor Simko <tibor.simko@cern.ch>

• Brett Anthoine <brett.anthoine@netplus.pro>

• Dimitrios Semitsoglou-Tsiapos <dsemitso@cern.ch>

• Jan Aage Lavik <jan.age.lavik@cern.ch>

33

mailto:info@invenio-software.org
mailto:roman.chyla@gmail.com
mailto:raja.sripada@cern.ch
mailto:jiri.kuncar@cern.ch
mailto:tibor.simko@cern.ch
mailto:brett.anthoine@netplus.pro
mailto:dsemitso@cern.ch
mailto:jan.age.lavik@cern.ch

Workflow Documentation, Release 2.0.0

34 Chapter 11. Authors

Index

Symbols
_Signal (class in workflow.engine), 24

A
abort() (workflow.engine.GenericWorkflowEngine static

method), 21
abortProcessing() (work-

flow.engine.GenericWorkflowEngine static
method), 21

add() (workflow.engine.Callbacks method), 24
add_many() (workflow.engine.Callbacks method), 24

B
break_current_loop() (work-

flow.engine.GenericWorkflowEngine method),
21

C
callback_chooser() (work-

flow.engine.GenericWorkflowEngine method),
21

callback_pos_reset() (workflow.engine.MachineState
method), 23

Callbacks (class in workflow.engine), 23
cleanup_callables() (workflow.engine.Callbacks class

method), 24
clear() (workflow.engine.Callbacks method), 24
clear_all() (workflow.engine.Callbacks method), 24
continue_next_token() (work-

flow.engine.GenericWorkflowEngine method),
21

current_object (workflow.engine.GenericWorkflowEngine
attribute), 21

current_taskname (work-
flow.engine.GenericWorkflowEngine attribute),
21

D
database_objects (work-

flow.engine_db.DbWorkflowEngine attribute),
25

DbWorkflowEngine (class in workflow.engine_db), 25

E
empty() (workflow.engine.Callbacks method), 24
execute_callback() (work-

flow.engine.GenericWorkflowEngine method),
21

F
final_objects (workflow.engine_db.DbWorkflowEngine

attribute), 25

G
GenericWorkflowEngine (class in workflow.engine), 21
get() (workflow.engine.Callbacks method), 24

H
halt() (workflow.engine.GenericWorkflowEngine

method), 21
halted_objects (workflow.engine_db.DbWorkflowEngine

attribute), 25
has_completed (workflow.engine.GenericWorkflowEngine

attribute), 22

I
init_logger() (workflow.engine.GenericWorkflowEngine

method), 22

J
jump_call() (workflow.engine.GenericWorkflowEngine

method), 22
jump_token() (workflow.engine.GenericWorkflowEngine

static method), 22

K
known_statuses (workflow.engine_db.DbWorkflowEngine

attribute), 25

M
MachineState (class in workflow.engine), 23

35

Workflow Documentation, Release 2.0.0

N
name (workflow.engine_db.DbWorkflowEngine at-

tribute), 25

O
ObjectStatus (class in workflow.engine_db), 25

P
process() (workflow.engine.GenericWorkflowEngine

method), 22
processing_factory (work-

flow.engine.GenericWorkflowEngine attribute),
22

processing_factory (work-
flow.engine_db.DbWorkflowEngine attribute),
25

R
replace() (workflow.engine.Callbacks method), 24
reset() (workflow.engine.MachineState method), 23
restart() (workflow.engine.GenericWorkflowEngine

method), 22
run_callbacks() (workflow.engine.GenericWorkflowEngine

method), 23
running_objects (work-

flow.engine_db.DbWorkflowEngine attribute),
25

S
save() (workflow.engine_db.DbWorkflowEngine

method), 25
skip_token() (workflow.engine.GenericWorkflowEngine

static method), 23
skipToken() (workflow.engine.GenericWorkflowEngine

static method), 23
status (workflow.engine_db.DbWorkflowEngine at-

tribute), 25
stop() (workflow.engine.GenericWorkflowEngine

method), 23

T
token_pos_reset() (workflow.engine.MachineState

method), 23

U
uuid (workflow.engine_db.DbWorkflowEngine attribute),

25

W
workflow_error() (workflow.engine._Signal method), 24
workflow_finished() (workflow.engine._Signal method),

24
workflow_halted() (workflow.engine._Signal method), 24

workflow_started() (workflow.engine._Signal method),
24

WorkflowStatus (class in workflow.engine_db), 25

36 Index

	What is Workflow?
	How do I use Workflow?
	Basic workflow use
	Loops and interrupts
	Celery support
	Storage-capable engine

	Signals support
	Useful engine methods
	Patterns
	Example: Parallel split
	Example: Synchronisation

	GenericWorkflowEngine API
	DbWorkflowEngine API
	Changes
	Incompatible changes
	New features
	Improved features

	Contributing
	License
	Authors

