
Workflow Documentation
Release 1.2.0

Roman Chyla

October 23, 2014

Contents

1 About 1

2 Details 3

3 Tasks 5
3.1 Example: Parallel split . 5
3.2 Example: Arbitrary cycles . 6
3.3 Example: Synchronisation . 7

4 API 9

5 Changes 15

6 Contributing 17

7 License 19

8 Authors 21

Python Module Index 23

i

ii

CHAPTER 1

About

Workflow engine is a Finite State Machine with memory. It is used to execute set of methods in a specified order.

Here is a simple example of a workflow configuration:

[
check_token_is_wanted, # (run always)
[# (run conditionally)

check_token_numeric,
translate_numeric,
next_token # (stop processing, continue with next token)
],

[# (run conditionally)
check_token_proper_name,
translate_proper_name,
next_token # (stop processing, continue with next token)
],

normalize_token, # (only for "normal" tokens)
translate_token,

]

1

Workflow Documentation, Release 1.2.0

2 Chapter 1. About

CHAPTER 2

Details

In the above simple configuration example, you can probably guess what the processing pipeline does with tokens - the
whole task is made of four steps and the whole configuration is just stored as a Python list. Every task is implemented
as a function that takes two objects:

• currently processed object

• workflow engine instance

Example:

def next_token(obj, eng):
eng.ContinueNextToken()

There are NO explicit states, conditions, transitions - the job of the engine is simply to run the tasks one after another.
It is the responsibility of the task to tell the engine what is going to happen next; whether to continue, stop, jump back,
jump forward and few other options.

This is actually a feature, useful when there are a lot of possible exceptions and transition states to implement for
NLP processing, as well as useful to make the workflow engine simple and fast – but it also has disadvantages, as the
workflow engine will not warn in case of errors.

The workflow module comes with many patterns that can be directly used in the definition of the pipeline, such as IF,
IF_NOT, PARALLEL_SPLIT and others.

The individual tasks then can influence the whole pipeline, available ‘’commands” are:

eng.stopProcessing # stops the current workflow
eng.haltProcessing # halts the workflow (can be used for nested wf engines)
eng.continueNextToken # can be called many levels deep, jumps up to next token
eng.jumpTokenForward # will skip the next object and continue with the next one
eng.jumpTokenBack # will return back, start processing again
eng.jumpCallForward # in one loop [call, call...] jumps x steps forward
eng.jumpCallBack # in one loop [call, call...] jumps x steps forward
eng.breakFromThisLoop # break from this loop, but do not stop processing

Consider this example of a task:

def if_else(call):
def inner_call(obj, eng):

if call(obj, eng): #if True, continue processing
eng.jumpForward(1)

else: #else, skip the next step
eng.jumpForward(2)

return inner_call

3

Workflow Documentation, Release 1.2.0

We can then write workflow definition like:

if_else(stage_submission),
[

[if_else(fulltext_available), #this will be run only when fulltext is uploaded during form submission
[extract_metadata, populate_empty_fields],
[#do nothing]],

[if_else(check_for_duplicates),
[stop_processing],
[synchronize_fields, replace_values]],

check_mandatory_fields,]
],
[
check_mandatory_fields, # this will run only for ’review’ stage
check_preferred_values,
save_record

]

4 Chapter 2. Details

CHAPTER 3

Tasks

Tasks are simple python functions, we can enforce rules (not done yet!) in a pythonic way using pydoc conventions,
consider this:

def check_duplicate(obj, eng):
"""
This task checks if the uploaded fulltext is a duplicate

@type obj: InspireGeneralForm
@precondition: obj.paths[]

list, list of paths to uploaded files
@postcondition: obj.fulltext[]

list containing txt for the extracted document
obj.duplicateids[]

list of inspire ids records that contain the duplicate of this document
@raise: stopProcessing on error
@return: True if duplicate found

"""
...

So using the python docs, we can instruct workflow engine what types of arguments are acceptable, what is the
expected outcome and what happens after the task finished. And let’s say, there will be a testing framework which
will run the workflow pipeline with fake arguments and will test all sorts of conditions. So, the configuration is not
cluttered with states and transitions that are possible, developers can focus on implementation of the individual tasks,
and site admins should have a good understanding what the task is supposed to do – the description of the task will be
displayed through the web GUI.

Here are some examples of workflow patterns (images are from http://www.yawlfoundation.org) and their implemen-
tation in Python. This gives an idea that workflow engine remains very simple and by supplying special functions, we
can implement different patterns.

3.1 Example: Parallel split

This pattern is called Parallel split (as tasks B,C,D are all started in parallel after task A). It could be implemented like
this:

def PARALLEL_SPLIT(*args):
"""
Tasks A,B,C,D... are all started in parallel
@attention: tasks A,B,C,D... are not addressable, you can’t

you can’t use jumping to them (they are invisible to
the workflow engine). Though you can jump inside the

5

http://www.yawlfoundation.org

Workflow Documentation, Release 1.2.0

branches
@attention: tasks B,C,D... will be running on their own

once you have started them, and we are not waiting for
them to finish. Workflow will continue executing other
tasks while B,C,D... might be still running.

@attention: a new engine is spawned for each branch or code,
all operations works as expected, but mind that the branches
know about themselves, they don’t see other tasks outside.
They are passed the object, but not the old workflow
engine object

@postcondition: eng object will contain lock (to be used
by threads)

"""

def _parallel_split(obj, eng, calls):
lock=thread.allocate_lock()
i = 0
eng.setVar(’lock’, lock)
for func in calls:

new_eng = duplicate_engine_instance(eng)
new_eng.setWorkflow([lambda o,e: e.setVar(’lock’, lock), func])
thread.start_new_thread(new_eng.process, ([obj],))
#new_eng.process([obj])

return lambda o, e: _parallel_split(o, e, args)

And is used like this:

from workflow.patterns import PARALLEL_SPLIT
from my_module_x import task_a,task_b,task_c,task_d

[
task_a,
PARALLEL_SPLIT(task_b,task_c,task_d)

]

3.2 Example: Arbitrary cycles

This is just for amusement (and to see how complicated it looks in the configuration).

#!python
[

... #here some conditional start
task_a,
task_b,
task_c,
if_else(some_test),
[task_d, [if_else(some_test),

lambda obj, eng: eng.jumpCallBack(-6), #jump back to task_a
some_other_task,

]]
[some_other_task],

...
]

TODO

6 Chapter 3. Tasks

Workflow Documentation, Release 1.2.0

Jumping back and forward is obviously dangerous and tedious (depending on the actual configuration), we need a
better solution.

3.3 Example: Synchronisation

After the execution of task B, task C, and task D, task E can be executed (I will present the threaded version, as the
sequential version would be dead simple).

def SYNCHRONIZE(*args, **kwargs):
"""
After the execution of task B, task C, and task D, task E can be executed.
@var *args: args can be a mix of callables and list of callables

the simplest situation comes when you pass a list of callables
they will be simply executed in parallel.

But if you pass a list of callables (branch of callables)
which is potentially a new workflow, we will first create a
workflow engine with the workflows, and execute the branch in it

@attention: you should never jump out of the synchronized branches
"""
timeout = MAX_TIMEOUT
if ’timeout’ in kwargs:

timeout = kwargs[’timeout’]

if len(args) < 2:
raise Exception(’You must pass at least two callables’)

def _synchronize(obj, eng):
queue = MyTimeoutQueue()
#spawn a pool of threads, and pass them queue instance
for i in range(len(args)-1):

t = MySpecialThread(queue)
t.setDaemon(True)
t.start()

for func in args[0:-1]:
if isinstance(func, list) or isinstance(func, tuple):

new_eng = duplicate_engine_instance(eng)
new_eng.setWorkflow(func)
queue.put(lambda: new_eng.process([obj]))

else:
queue.put(lambda: func(obj, eng))

#wait on the queue until everything has been processed
queue.join_with_timeout(timeout)

#run the last func
args[-1](obj, eng)

_synchronize.__name__ = ’SYNCHRONIZE’
return _synchronize

Configuration (i.e. what would admins write):

from workflow.patterns import SYNCHRONIZE
from my_module_x import task_a,task_b,task_c,task_d

[

3.3. Example: Synchronisation 7

Workflow Documentation, Release 1.2.0

SYNCHRONIZE(task_b,task_c,task_d, task_a)
]

8 Chapter 3. Tasks

CHAPTER 4

API

This documentation is automatically generated from Workflow’s source code. Workflow engine is a Finite State
Machine with memory.

class workflow.engine.GenericWorkflowEngine(processing_factory=None, call-
back_chooser=None, before_processing=None,
after_processing=None)

Workflow engine is a Finite State Machine with memory.

It is used to execute set of methods in a specified order.

example:

from merkur.workflows.parts import load_annie, load_seman
from newseman.general.workflow import patterns as p

workflow = [
load_seman_components.workflow,
p.IF(p.OBJ_GET([’path’, ’text’], cond=’any’), [

p.TRY(g.get_annotations(), retry=1,
onfailure=p.ERROR(’Error in the annotation workflow’),
verbose=True),

p.IF(p.OBJ_GET(’xml’),
translate_document.workflow)

])
]

This workflow is then used as:

wfe = GenericWorkflowEngine()
wfe.setWorkflow(workflow)
wfe.process([{’foo’: ’bar’}, {’foo’: ’baz’}])

This workflow engine instance can be freezed and restarted, it remembers its internal state and will pick up
processing after the last finished task.

import pickle
s = pickle.dumps(wfe)

However, when restarting the workflow, you must initialize the workflow tasks manually using their original
definition

wfe = pickle.loads(s)
wfe.setWorkflow(workflow)

9

Workflow Documentation, Release 1.2.0

It is also not possible to serialize WFE when custom factory tasks were provided. If you attempt to serialize such
a WFE instance, it will raise exception. If you want to serialize WFE including its factory hooks and workflow
callbacks, use the PhoenixWorkflowEngine class instead.

addCallback(key, func, before=None, after=None, relative_weight=None)
Insert one callable to the stack of the callables.

addManyCallbacks(key, list_or_tuple)
Insert many callable to the stack of thec callables.

static after_processing(objects, self)
Standard post-processing callback, basic cleaning.

static before_processing(objects, self)
Standard pre-processing callback.

Save a pointer to the processed objects.

breakFromThisLoop()
Stop in the current loop but continues in those above.

static callback_chooser(obj, self)
Choose proper callback method.

There are possibly many workflows inside this workflow engine and they are meant for different types of
objects, this method should choose and return the callbacks appropriate for the currently processed object.

Parameters

• obj – currently processed object

• eng – the workflow engine object

Returns set of callbacks to run

configure(**kwargs)
Method to set attributes of the workflow engine.

Note: Use with extreme care (well, you can set up the attrs directly, I am not protecting them, but that is not
nice). Used mainly if you want to change the engine’s callbacks - if processing factory before_processing,
after_processing.

Parameters kwargs – dictionary of values

continueNextToken()
Continue with the next token.

delVar(key)
Delete parameter from the internal storage.

execute_callback(callback, obj)
Execute the callback - override this method to implement logging.

getCallbacks(key=’*’)
Return callbacks for the given workflow.

Parameters key – name of the workflow (default: ‘*’) if you want to get all configured work-
flows pass None object as a key

Returns list of callbacks

getCurrObjId()
Return id of the currently processed object.

10 Chapter 4. API

Workflow Documentation, Release 1.2.0

getCurrTaskId()
Return id of the currently processed task.

Note: The return value of this method is not thread-safe.

getObjects()
Return iterator for walking through the objects.

getVar(key, default=None)
Return named obj from internal stack. If not found, return None.

Parameters

• key – name of the object to return

• default – if not found, what to return instead (if this arg is present, the stack will be
initialized with the same value)

Returns anything or None

haltProcessing()
Halt the workflow (stop also any parent wfe).

hasVar(key)
Return True if parameter of this name is stored.

jumpCallBack(offset)
Return x calls back in the current loop.

Note: Be careful with circular loop.

jumpCallForward(offset)
Jump to x th call in this loop.

jumpTokenBack(offset)
Return x tokens back - be careful with circular loops.

jumpTokenForward(offset)
Jump to x th token.

process(objects)
Start processing.

Parameters objects – either a list of object or instance of TokenizedDocument

Returns You never know what will be returned from the workflow. But many exceptions can
be raised, so watch out for them, if there happened an exception, you can be sure something
wrong happened (something that your workflow should handle and didn’t). Workflow engine
is not interfering into the processing chain, it is not catching exceptions for you.

static processing_factory(objects, self)
Default processing factory, will process objects in order.

As the WFE proceeds, it increments the internal counter, the first position is the number of the element.
This pointer increases before the object is taken.

2nd pos is reserved for the array that points to the task position. The number there points to the task that is
currently executed; when error happens, it will be there unchanged. The pointer is updated after the task
finished running.

Parameters

• objects – list of objects (passed in by self.process())

11

Workflow Documentation, Release 1.2.0

• cls – engine object itself, because this method may be implemented by the standalone
function, we pass the self also as a cls argument

removeAllCallbacks()
Remove all the tasks from the workflow engine instance.

removeCallbacks(key)
Remove callbacks for the given key.

replaceCallbacks(key, funcs)
Replace processing workflow with a new workflow.

reset()
Empty the stack memory.

restart(obj, task, objects=None)
Restart the workflow engine after it was deserialized.

run_callbacks(callbacks, objects, obj, indent=0)
Execute callbacks in the workflow.

Parameters

• callbacks – list of callables (may be deep nested)

• objects – list of processed objects

• obj – currently processed object

• indent – int, indendation level - the counter at the indent level is increases after the task has
finished processing; on error it will point to the last executed task position. The position
adjusting also happens after the task has finished.

setLogger(logger)
Set logger used by workflow engine.

Note: The logger instance must be pickable if the serialization should work.

setPosition(obj_pos, task_pos)
Set the internal pointers (of current state/obj).

Parameters

• obj_pos – (int) index of the currently processed object After invocation, the engine will
grab the next obj from the list

• task_pos – (list) multidimensional one-element list that says at which level the task should
restart. Example: 6th branch, 2nd task = [5, 1]

setVar(key, what)
Store the obj in the internal stack.

setWorkflow(list_or_tuple)
Set the (default) workflow which will be run on process() call.

Parameters list_or_tuple – workflow configuration

stopProcessing()
Break out, stop everything (in the current wfe).

class workflow.engine.PhoenixWorkflowEngine(*args, **kwargs)
Implementation of serializable workflow engine.

12 Chapter 4. API

Workflow Documentation, Release 1.2.0

Engine is able to be serialized and re-executed also with its workflow tasks - without knowing their original
definition. This implementation depends on the picloud module - http://www.picloud.com/. The module must
be installed in the standard location.

13

http://www.picloud.com/

Workflow Documentation, Release 1.2.0

14 Chapter 4. API

CHAPTER 5

Changes

Version 1.2.0 (released 2014-10-23):

• Fix interference with the logging level. (#22 #23)

• Test runner is using Pytest. (#21)

• Python 3 support. (#7)

• Code style follows PEP8 and PEP257. (#6 #14)

• Improved Sphinx documentation. (#5 #28)

• Simplification of licensing. (#27)

• Spelling mistake fixes. (#26)

• Testing with Tox support. (#4)

• Configuration for Travis-Cl testing service. (#3)

• Test coverage report. (#2)

• Unix style line terminators. (#10)

Version 1.0 (released 2011-07-07):

• Initial public release.

• Includes the code created by Roman Chyla, the core of the workflow engine together with some basic patterns.

• Raja Sripada <rsripada at cern ch> contributed improvements to the pickle&restart mechanism.

15

Workflow Documentation, Release 1.2.0

16 Chapter 5. Changes

CHAPTER 6

Contributing

Bug reports, feature requests, and other contributions are welcome. If you find a demonstrable problem that is caused
by the code of this library, please:

1. Search for already reported problems.

2. Check if the issue has been fixed or is still reproducible on the latest master branch.

3. Create an issue with a test case.

If you create a feature branch, you can run the tests to ensure everything is operating correctly:

$./run-tests.sh

...
Name Stmts Miss Cover Missing

workflow/__init__ 2 0 100%
workflow/config 231 92 60% ...
workflow/engine 321 93 71% ...
workflow/patterns/__init__ 5 0 100%
workflow/patterns/controlflow 159 66 58% ...
workflow/patterns/utils 249 200 20% ...
workflow/version 2 0 100%

TOTAL 969 451 53%

...

55 passed, 1 warnings in 3.10 seconds

17

https://github.com/inveniosoftware/workflow/issues

Workflow Documentation, Release 1.2.0

18 Chapter 6. Contributing

CHAPTER 7

License

Workflow is free software; you can redistribute it and/or modify it under the terms of the Revised BSD License quoted
below.

Copyright (C) 2011, 2012, 2014 CERN.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

In applying this license, CERN does not waive the privileges and immunities granted to it by virtue of its status as an
Intergovernmental Organization or submit itself to any jurisdiction.

19

Workflow Documentation, Release 1.2.0

20 Chapter 7. License

CHAPTER 8

Authors

Workflow was originally developed by Roman Chyla. It is now being developed and maintained by the Invenio
collaboration. You can contact us at info@invenio-software.org.

Contributors:

• Roman Chyla <roman.chyla@gmail.com>

• Raja Sripada <raja.sripada@cern.ch>

• Jiri Kuncar <jiri.kuncar@cern.ch>

• Tibor Simko <tibor.simko@cern.ch>

• Brett Anthoine <brett.anthoine@netplus.pro>

21

mailto:info@invenio-software.org
mailto:roman.chyla@gmail.com
mailto:raja.sripada@cern.ch
mailto:jiri.kuncar@cern.ch
mailto:tibor.simko@cern.ch
mailto:brett.anthoine@netplus.pro

Workflow Documentation, Release 1.2.0

22 Chapter 8. Authors

Python Module Index

w
workflow, 9

23

Workflow Documentation, Release 1.2.0

24 Python Module Index

Index

A
addCallback() (workflow.engine.GenericWorkflowEngine

method), 10
addManyCallbacks() (work-

flow.engine.GenericWorkflowEngine method),
10

after_processing() (work-
flow.engine.GenericWorkflowEngine static
method), 10

B
before_processing() (work-

flow.engine.GenericWorkflowEngine static
method), 10

breakFromThisLoop() (work-
flow.engine.GenericWorkflowEngine method),
10

C
callback_chooser() (work-

flow.engine.GenericWorkflowEngine static
method), 10

configure() (workflow.engine.GenericWorkflowEngine
method), 10

continueNextToken() (work-
flow.engine.GenericWorkflowEngine method),
10

D
delVar() (workflow.engine.GenericWorkflowEngine

method), 10

E
execute_callback() (work-

flow.engine.GenericWorkflowEngine method),
10

G
GenericWorkflowEngine (class in workflow.engine), 9

getCallbacks() (workflow.engine.GenericWorkflowEngine
method), 10

getCurrObjId() (workflow.engine.GenericWorkflowEngine
method), 10

getCurrTaskId() (work-
flow.engine.GenericWorkflowEngine method),
10

getObjects() (workflow.engine.GenericWorkflowEngine
method), 11

getVar() (workflow.engine.GenericWorkflowEngine
method), 11

H
haltProcessing() (work-

flow.engine.GenericWorkflowEngine method),
11

hasVar() (workflow.engine.GenericWorkflowEngine
method), 11

J
jumpCallBack() (work-

flow.engine.GenericWorkflowEngine method),
11

jumpCallForward() (work-
flow.engine.GenericWorkflowEngine method),
11

jumpTokenBack() (work-
flow.engine.GenericWorkflowEngine method),
11

jumpTokenForward() (work-
flow.engine.GenericWorkflowEngine method),
11

P
PhoenixWorkflowEngine (class in workflow.engine), 12
process() (workflow.engine.GenericWorkflowEngine

method), 11
processing_factory() (work-

flow.engine.GenericWorkflowEngine static
method), 11

25

Workflow Documentation, Release 1.2.0

R
removeAllCallbacks() (work-

flow.engine.GenericWorkflowEngine method),
12

removeCallbacks() (work-
flow.engine.GenericWorkflowEngine method),
12

replaceCallbacks() (work-
flow.engine.GenericWorkflowEngine method),
12

reset() (workflow.engine.GenericWorkflowEngine
method), 12

restart() (workflow.engine.GenericWorkflowEngine
method), 12

run_callbacks() (workflow.engine.GenericWorkflowEngine
method), 12

S
setLogger() (workflow.engine.GenericWorkflowEngine

method), 12
setPosition() (workflow.engine.GenericWorkflowEngine

method), 12
setVar() (workflow.engine.GenericWorkflowEngine

method), 12
setWorkflow() (workflow.engine.GenericWorkflowEngine

method), 12
stopProcessing() (work-

flow.engine.GenericWorkflowEngine method),
12

W
workflow (module), 9

26 Index

	About
	Details
	Tasks
	Example: Parallel split
	Example: Arbitrary cycles
	Example: Synchronisation

	API
	Changes
	Contributing
	License
	Authors
	Python Module Index

